Zero-Shot Learning on Semantic Class Prototype Graph
نویسندگان
چکیده
منابع مشابه
Zero-Shot Learning on Semantic Class Prototype Graph.
Zero-Shot Learning (ZSL) for visual recognition is typically achieved by exploiting a semantic embedding space. In such a space, both seen and unseen class labels as well as image features can be embedded so that the similarity among them can be measured directly. In this work, we consider that the key to effective ZSL is to compute an optimal distance metric in the semantic embedding space. Ex...
متن کاملSemantic Graph for Zero-Shot Learning
Zero-shot learning aims to classify visual objects without any training data via knowledge transfer between seen and unseen classes. This is typically achieved by exploring a semantic embedding space where the seen and unseen classes can be related. Previous works differ in what embedding space is used and how different classes and a test image can be related. In this paper, we utilize the anno...
متن کاملZero-Shot Learning for Semantic Utterance Classification
We propose a novel zero-shot learning method for semantic utterance classification (SUC). It learns a classifier f : X → Y for problems where none of the semantic categories Y are present in the training set. The framework uncovers the link between categories and utterances through a semantic space. We show that this semantic space can be learned by deep neural networks trained on large amounts...
متن کاملPreserving Semantic Relations for Zero-Shot Learning
Zero-shot learning has gained popularity due to its potential to scale recognition models without requiring additional training data. This is usually achieved by associating categories with their semantic information like attributes. However, we believe that the potential offered by this paradigm is not yet fully exploited. In this work, we propose to utilize the structure of the space spanned ...
متن کاملClass label autoencoder for zero-shot learning
Existing zero-shot learning (ZSL) methods usually learn a projection function between a feature space and a semantic embedding space(text or attribute space) in the training seen classes or testing unseen classes. However, the projection function cannot be used between the feature space and multi-semantic embedding spaces, which have the diversity characteristic for describing the different sem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 2018
ISSN: 0162-8828,2160-9292,1939-3539
DOI: 10.1109/tpami.2017.2737007